Non-parametric Determination of Real-Time Lag Structure between Two Time Series: the “Optimal Thermal Causal Path” Method

نویسنده

  • Didier Sornette
چکیده

We introduce a novel non-parametric methodology to test for the dynamical time evolution of the lag-lead structure between two arbitrary time series. The method consists in constructing a distance matrix based on the matching of all sample data pairs between the two time series. Then, the lag-lead structure is searched as the optimal path in the distance matrix landscape that minimizes the total mismatch between the two time series, and that obeys a one-to-one causal matching condition. To make the solution robust to the presence of large noise that may lead to spurious structures in the distance matrix landscape, we then generalize this optimal search by introducing a fuzzy search by sampling over all possible paths, each path being weighted according to a multinomial logit or equivalently Boltzmann factor proportional to the exponential of the global mismatch of this path. We present the efficient transfer matrix method that solves the problem and test it on simple synthetic examples to demonstrate its properties and usefulness compared with the standard running-time cross-correlation method. We then apply our ‘Optimal Thermal Causal Path” method to the question of the causality between the US stock market and the treasury bond yields and confirm our earlier results on a causal arrow of the stock markets preceding the Federal Reserve Funds adjustments as well as the yield rates at short maturities in the period 2000-2003. Our application of this technique to inflation, inflation change, GDP growth rate and unemployment rate unearths non-trivial “causal” relationships: the GDP changes lead inflation especially since the 1980s, inflation changes leads GDP only in the 1980 decade, and inflation leads unemployment rates since the 1970s. In addition, our approach seems to detect multiple competing causality paths in which one can have inflation Preprint submitted to Elsevier Science 2 February 2008 leading GDP with a certain lag time and GDP feeding back/leading inflation with another lag time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lead-lag cross-sectional structure and detection of correlated-anticorrelated regime shifts: application to the volatilities of inflation and economic growth rates

We have recently introduced the “thermal optimal path” (TOP) method to investigate the real-time lead-lag structure between two time series. The TOP method consists in searching for a robust noise-averaged optimal path of the distance matrix along which the two time series have the greatest similarity. Here, we generalize the TOP method by introducing a more general definition of distance which...

متن کامل

A comparison of parametric and non-parametric methods of standardized precipitation index (SPI) in drought monitoring (Case study: Gorganroud basin)

The Standardized Precipitation Index (SPI) is the most common index for drought monitoring. Although the calculation of this index is usually done by using the gamma distribution fitting of precipitation data, studies have shown that for accurate monitoring of drought, the optimal distribution of precipitation in each month should be determined. On the other hand, in non-stationary time series,...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

On the Detection of Trends in Time Series of Functional Data

A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...

متن کامل

Causal Inference on Event Sequences

Given two event sequences, i.e. two discrete valued time series, of length n can we tell whether they are causally related? Œat is, can we tell whether xn causes yn , whether yn causes xn? Can we do so without having to make assumptions on the distribution of these time series, or about the lag of the causal e‚ect? And, importantly for practical application, can we do so accurately and ecientl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004